AD-A122 @83 STRENGTH OF LUMBER UNDER COMBINED BENDING AND
2 Fégg(gPLPOREST PRODUCTS LAB MADISON WI

NN

1/1
J J ZAHN

F/G 11712 NL

sl [ [ ][

UNCLARSSIFIED




o e RN
atnt et

. T
-

R A

e

I PN A S

ddd3e
o ddaa

. anuunuuu.m

1.0

Il
125
E——

“m l.
MICROCOPY RESOLUTION TEST CHART
NATIONSL QUATAU OF STANDANOS 1983 - A

oma e

L e Srd it JPUA Mebae et S e et Mt

T al .

HBTLAS ol AR AT TS i B




United States
Department
of Agriculture

Forest Service

Foraest
Products
Laboratory

Research
Paper
FPL 391

T G LRI
a pRUR SV
+

Strength of Lumber
Under

Combined Bending
and Compression

[ This document has been approved
for public rolorses and sale; its
distribution {s unlimited.

82 12 06 061




aXd 9 @ . m_ . s e ww.a s e ow Y -
L N N A A D N i I I R AT T SRl Nl Nt St Ot Sl gt i Ji g g, it e e S it e B B e 3]
. R e e e et WY e T e AT e T T T e T Be T N T T e T T

Abstract

It is conjectured that the addition of a small compressive
force might increase bending strength. Extensive tests of
western hemlock 2 by 6’s under eccentric axial load bear this
out. Test members were short but length effect is studied
analytically by simulating long members with a finite element
computer program. A small sample of long members was
tested to verify the computer model. Verification was not
thorough but the model appears to do very well. It accurately
reproduces the mean but underestimates the variance. Further
work on the model is planned. This work will have important
applications to column design and wood truss design.
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Introduction

Wood members under combined bending and compression oc<
cur as structural elements in several important applications: as
the top chords of trusses, as wall studs, as frame members in
towers, and in other rigid frame structures. While strength in
bending alone and compression alone have been extensively
studied, the interaction of these two modes of failure is 1
poorly understood, particularly for dimension lumber of com-
mon construction grades. There is reason to expect that a

// moderate compressive force acting in concert with a bending 5

moment could raise the moment capacity by shifting the mode
of failure from a defect-controlled brittie rupture to a more
ductile compression failure (/).? Plastic buckling could
become a failure mode. In the absence of good data on
failure under combined bending and compression, present
design recommendations are quite conservative; this conser-
vatism is a major economic factor in the wood roof truss in-
dustry.

Experimental
Design of Experiments

The aim of this study was to define a failure locus in the
plane of bending moment (M) versus compressive force (C).
Attention was restricted to that portion of the plane where
bending stress exceeds compressive stress since that is the
region of greatest importance in the design of wood frame
structures and trussed roofs.

' Maintained at Madison, Wis., in cooperation with the University of
Wisconsin.

* halicized numbers in parentheses refer to literature cited at end of this report.
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T ~ ) In order to limit the scope of the study, only one species

(Western Hemlock) and one size (nominal 2 x 6) were studiad
The effects of length and grade of material were rec~gnized
critical but rather than test several combinations of length and
grade it was decided to simulate these effects with a finite-
element computer program. In that way only short pieces
(single “‘elements’’) need be tested to establish a data pool
from which a computer program can select elements and
mathematically simulate the behavior of longer members. The
effect of material grade was incorporated by measuring a
quality index for each element. The edgewise bending stiffness
was chosen for this index because it is known to have the best
correlation with bending strength of any nondestructive
measurement. In addition to establishing the data pool of ele-
ment properties, a few longer members were tested to verify
the finite element model’s predictive ability.

Thus, the aims of the experimental program were twofold:

1. To test short members under combined bending and
compression at various M/C ratios. For this purpose four
large groups of specimens were tested, three under eccentric
axial load at different eccentricities and one in pure bending.

2. To verify the computer-simulated behavior of longer
members. For this (secondary) purpose, a small group of
8-foot long members were quality-rated and then tested under
eccentric axial load.

The resulting experimental design is shown in table 1.
Material

Western hemlock of 10-foot and 12-foot lengths was pur-
chased from the Eburn mill of the Canadian Forest Products




Vaeen st

£
e alela

" — R
DI N G TR A A A NS N A B

§ Table 1.—Summery of tests performed e 1 4

1 100 + on om.

; Number of G, length Difection of load

: Axislloag  "Pecimens

“ In. In.

. M 149 600

1 1 1 1101 18 Axisl eccentric Figure 1.—Loading used for E-rating specimens in groups

) one 10 four.

- 2 15 ‘192 13 Axial eccentric

§ e e

. 3 35 e¢ 18 Axial eccentric +_ﬁ_i_“_t_,,. - L....*
4 o 14 1 Lateral ' ' ]
s 1 2 %  Axial eccentric s> e
 These bad been planned to be 125 each, but tests were discarded amr| / I o | ’ l ‘ I s I
whenever failure oocurred outside the gage length. '".“

Company. An effort was made to‘select members with a No.
2 grade defect in the gage length portions of two 5-foot

Specimen Preparation :

Figure 2.—Loading used for E-rating specimens in group
Jive. The member was rated five times, one
Jor each 19-inch element. The position shown

3 members to be cut from each longer length. Since western here is for rating element 2.

5 hemlock and white fir are marketed together, each piece had

- to be identified by microscopic examination of cell structure

N and the white fir segregated for use in other studies.

i E;= _S(P.—P)L’

Five-hundred specimens S feet long were cut with an effort to
position defects in the center 18 inches of the piece whenever
possible. Thirty members 11 feet long were cut from pieces
deemed not suitable for the short specimens. Short specimens
were quality rated by testing in edgewise bending to a load of
300 pounds. Two-point load was applied at the third points as
shown in figure 1. An online computer took digitized readings
of load and head movement at two points and computed an
“E-rating” value, E,, from the formula

where P =load, H=head movement, L =54 inches, b=width,
and h =depth. The 11-foot specimens were each quality rated
at five different positions by a similar test in edgewise bending
under two-point loading as shown in figure 2. Between
readings the member was indexed through the test machine in
19-inch increments. Again a computer used head movement
and machine load to compute E, for each of five “‘clements”
in the central 8-foot gage length of these 11-foot members.

9 Toble 2.—Summary of experimentsl resuits
Properties 1 2 3 s s
- Ulimate sxist load,
: r» 31,28 '0.212) 24,000 (0.225) 13,300 (0.296) — 16.908 (0.349)
Canter defloction at
witioaate load,'A , . 1.17 (069 1.69 (39) 372 (022) — oo
8 Ultimate mement M..
- Y 36,000 (229 €,7% (229 ©,600 (29 41,100 0.026) —
Y Quallty index
:L L4V b 1.04 (200 105 (169 1.3 (211) 104 (157 *0.981 (.206)
Apparent moduins |
- wem I 262 191 (280 199 (299 2.16 (247 -
o Specific gravity 0.453 (.12 0.484 (.M5) 448 (.137) 452 (.120) A38 (.131)
3 Molsture contont, pet 102 (009 11.2 (os7 113 (459 12.3 (9D) 10.4 (o)
2
1 ' Mean value (coefficient of variation
s Doss not spply (Group 4 was tested in bending)

]
¢ Iinchudes the ecoentricity, i.e., it is messured from the line of action of the axial load.
* B, was of the conter element in Group $.
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Figure 3.—Loading fixture for applying eccentric axial
load: A) diagram, B) photo of side view, and
C) photo looking into empty boot. Rope
restrains boot from falling out when specimen
JSails.
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The short members were sorted in order of increasing E;. The
first four were randomly assigned to groups 1 through 4. The
next four were then randomly assigned, and the next four,
etc., until four matched groups were produced with nearly
identical distributions of E,. Table 2 shows how closely the E;
distributions of groups one to four agreed. Means ranged
from 1.03 to 1.05 million pounds per square inch and coeffi-
cients of variat.on ranged from 0.157 to 0.211.

Test Methods

Groups One to Three

Eccentric axial load was applied through grips in the form of
steel boots 18 inches long. The top of the boot bore against
the end of the specimen. The narrow sides of the boot were
made snug against the specimen by means of adjusting screws
shown in figure 3. The bottom of the boot had flanges which
received the test machine load by way of a yoke which
straddled the boot. This put the pivot point as close to the
gage length as possible in order to minimize the growth of
eccentricity due to specimen deformation during a test. Since
inservice wall studs and roof truss chords are restrained
against lateral buckling by sheathing materials, the test
specimens were laterally supported at midspan by fixed braces
on each side of the specimen. Initially there was an 1/8-inch
clearance between the specimen and the lateral supports and
the support braces were surfaced with a hard polished plastic
having a low coefficient of friction. In this manner the
specimens were constrained to deflect only in the direction of
greatest stiffness.

Deformation measurements were taken by two linear variable
differential transformers (LVDT’s) at the ends of arms at-
tached to the wide faces of the specimen, as shown in figure
4. The arms were clamped to the specimen with an 18-inch

- gage length between them. The two deflection readings y, and

y: are related to axial deflection and curvature as follows:

A= 3+ @

l = 2(y| —y:) (3)
R™ a@l+y.+y)

where Af =axial elongation (contraction if negative), R
=radius of curvature, { =gage length (18 in.), and a =arm
length (14 in.).

SPECIMEN
[ $¢5°

tast

10690
Figure 4.—Deflectometer arrangement. Rigid arms were
clamped 10 specimen and linear variable dif-
Jerential transformers (LVDT's) were mounted
between them at 7 inches on either side of
center line.
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The moment applied to the specimen by the eccentric axial

load i

oad is M=P¢ @
where & equals lateral deflection of specimen centroidal axis

measured from line of action of P. During test, the boots
rotate through an angle 6

0=§ 1)

where S equals arc length between boots, which is 24 inches
(see figure S). Thus d can be computed from

! d=e cos-g+b sing+R(l-cosg) ()]
[ where e = eccentricity and b =4 inches = distance from pivot

- point to edge of boot.

! Dats Recording

Load P and deflections y, and y: were recorded automatically
on punched paper tape with the aid of an online computer

M 140 842 and teletype machine (see figure 6). An X-Y plotter recorded

y, and y; versus P. The paper tapes were later read by
Figure 5.—Exaggerated specimen dqformauon showing another computer and reduced to R, P, and d and stored on'
curvature and center deflection, & magnetic tape. These magnetic tapes and the X-Y plots form

a permanent record of the raw test data.
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" Figure 6.—Automatic data recording was accomplished
with (a) an X- Y plotter, (b) an online compu-
;;r";:;d (¢) a teletype machine with paper tape
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Data Processing

Each test in groups one to four was processed to yield a plot
of moment versus curvature. From these plots four properties
were extracted: stiffness, strength, ductility, and knee-shape.
To do this, the lh{nberg-Osgood function was fitted to the
plots of M versus R

% =Hic+ kMem m
where ¢ =half depth =2.75 inches, EI = flexural rigidity,
pounds-inches? and K and n are fitted parameters.

To minimize rounding error in the curve fitting computations
it is better to write equation (7) in the form

k=x+exp [In(yy)+n 1n(§‘-l) ) ®
where x !grc, Xy = X at ultimate load, and y, = (ﬁ—ﬁc) at
ultimate load. This reduces to the Ramberg-Osgood form (eq.
(N)if K = =2 K is not a convenient parameter since it

Xy
can easily become so large that it overflows the floating point
accumulator of a digital computer. Fitting the function given
by equation (8), the four desired properties can easily be
identified with the following fitted parameters:
EI =stiffness, X, = strength, Y= ductility, and n = knee-shape.

Figure 7 shows a typical fitted curve and the geometric mean-
ing of the four properties. Hereafter this moment-curvature
characteristic will be referred to as the “‘property’’ curve since
it is uniquely specified by the four relevant properties. Note
that the tail of the test record beyond maximum load is ig-
nored in fitting the Ramberg-Osgood function, because this is
a test machine artifact and not relevant to the dead-load con-
ditions for which members are designed.

% POINT OF
A MAX, LOAD

e = MALF DEPTH

&1

curvarure
M 149613

Figure 7.—Typical plot of moment versus curvature,
Jrom which four element properties can be de-
rived: stiffness El, strength M,,, ductility y,,,
and shape n. Larger n implies a sharper knee.

Minor Tests

After testing the strength specimens to destruction, small
coupons approximately 1.5 by 1.5 by .5 inches were cut from
each and used to measure specific gravity and moisture con-
tent. The results are summarized for each group in table 2
which shows means followed by coefficient of variation in

parentheses. It is seen that these properties did not vary ap-
preciably between groups. Therefore no adjustments were
made to the data to correct for these variations.

Results of Experiments

Short Specimens—Groups One to Four

The results of the short member tests were four properties of
each specimen obtained by fitting a Ramberg-Osgood func-
tion as described under Data Processing. There were four
groups of specimens corresponding to four eccentricities as
shown in table 1. Within each group a normal probability
curve was fitted to each of the four properties, stiffness EI,
strength x,;, ductility y,;, and knee-shape n, and to the quality
index, ET, In some cases it was found that the logarithm of
the property was more nearly normal than the property itself.
Specifically, the following properties were fitted with a multi-
variate normal probability curve:

Stiffness—EI, Strength—In M,;, Ductility—1n y,;, Knee-
shape—In n, Quality—ET, where M, is the moment at max-
imum load and E is the E-rating index of quality obtained
from a preliminary nondestructive test as described under
Specimen Preparation. The results of these curve fittings are
summarized in table 3 which gives the means and the matrix
of covariance for groups one to four.

Since the covariance matrix is diagonally symmetric, it con-
tains only 1S independent elements. These plus the 5 means
form 20 independent statistics for each group. These shall be
denoted as S, through S;, defined such that

El S,
ln(M “) Sz
Mean of | In(y,) =1S
In(n) S.
E, S
S‘ S1 s. 89 S'.
Covariance matrix = : fn ::: ::: :::
(diagonally symmetric) e o o S,8S,

S

For example, S, is the covariance of EI and In y,. Together,
the 20 statistics for any one group uniquely specify a multi-
variate (specifically five-variate) normal distribution that
characterizes that group.

It should be noted that the characteristic multivariate distribu
tion depends on e, the eccentricity of the group. All 20
statistics (with the exception of S; and S,,, the mean and
variance of E,) are functions of eccentricity e. Figure 8
shows, as an example, how the mean of the strength
parameter In M, varies with eccentricity. For convenience in
treating group four (pure bending, ¢ =) the statistics are
plotted against the reciprocal of ¢ and group four is at the
origin. Note that the expected results were obtained: pure
bending does not have the highest moment capacity. It is in-
teresting to plot this in a plane of moment versus axial force.
Figure 9 shows such a plot. It is seen that the addition of a
small amount of axial compression does indeed increase the
moment capacity for members tested over a short gage length.

ke
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Figure 8.—Variation of input distribution with ecentri-
city. The mean of In My, is shown, along with
a fitted parabola.

Long Specimens—Group Five

It is tempting at this point to simply use the data of groups
one to four as a basis for design of members under combined
bending and compression. However, the effect of length (in-
cluding the possibility of plastic buckling) is critical and is not
contained in figure 9. Group 5 shows this. It had the same ec-
centricity as group one but different length and, as table 2
shows, its mean ultimate load was only about half of that of
group one. The E,; distributions of groups five and one are
not quite as closely matched as those of groups one to four
but are still very close. This comparison clearly shows that
there is a profound length effect. It is due to plastic instability
in the presence of material asymmetries around defects and
variable stiffness along the length. Such an effect is difficult
to analyze mathematically in closed form. A nonlinear,
numerical analysis is done in the next section, where the E,
variation along the length of the members in group five is
used as an input to a non-standard finite element simulation
of the group five specimens.

Monte Carlo Simulation of Length Effect

Group five specimens were simulated with the special finite
element analysis given in the appendix. In that analysis th2
nonlinear Ramberg-Osgood function given in equation (7) is
used to represent the relationship between moment and curva-
ture. This equation is exactly solved by iteration for each
given set of four Ramberg-Osgood properties: El, x,,, y,, and
n. These properties are assumed to be piecewise constant
functions of x with five “‘pieces’’ or *‘finite elements” cover-
ing the range of x. Deflections and slopes are matched at the
nodes between elements. This is far more exact than a stan-
dard finite element approach which would approximate
deflection shapes over each element and would account for
geometric nonlinearity in an approximate manner via the so-
called stability matrix. Since the number of elements could
not be made large here, it was decided to use a more exact
non-standard finite element method. Five 19-inch elements
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Figure 9.—Results of short member tests: failure moment
versus failure load (both measured at point of
maximum load) for groups one to four
(KIPS = thousand lbs).

add up to a 95-inch-long member — essentially 8 feet. The
results of the short member tests, which had a gage length of
18 inches, were used in a five-element model to simulate the
behavior of the group five specimens. The error of using data
obtained over 18 inches in a 19-inch element is negligible.

Input Parameters

In the Monte Carlo technique, input parameters are randomly
selected from a known distribution and a test is simulated.
This is repeated many times until enough output strength
values have been generated to give an idea of the output
distribution.

In this case the input was of two kinds: (1) the distribution of
element properties and (2) a quality description of the long
member to be simulated. Input (1) consisted of a five-variate
normal distribution in the variable EI, In(M_ ), ln(yu), 1n(n),
and Er' This was specified by a five-vector of means and

a five by five symmetric covariance matrix, that is, by 20
independent statistics. See equations (9) and (10). With the
exception of E, and its variance, each of these statistics is a
function of the eccentricity of the element as can be seen by
examining table 3 and figure 8. Hence each was specified by
the three coefficients of a parabola

Si=ai) + by +q; an

Here a;, bj, and ¢; are the fitted coefficients, S; is a statistic
fitted by least squares to the data in table 3, and e is the ec-
centricity. These coefficients are shown in table 4. The other
input (2) consisted of the E, values of the five elements of the
long member to be simulated. These had been obtained
nondestructively for the specimens in group five before testing
them in eccentric axial compression.
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Random Selection of Elements
The Monte Carlo technique proceeded as follows: El
. For each element with a given measured value of E,, In(M,)
.3 In(y,) = Normal with mean u and covariance
e 1. Generate four independent random normal variates with In(n)
zero mean and unit variance: E,
z where
z= Z, 2 S
Zs S:
. . . N u=1S, 13)
This vector will be used in step 4. It identifies the randomly- S.
chosen element. S,
2. Using the current eccentricity e of the element, calculate
the parameters S, through S;, of the element property
distribution at this eccentricity:
Table 3.—Summary of property statistics
.
N Statistic Group
N 1 2 3 4
-
b MEANS (see eq. )
2 S, =mean(El) 0.444761 +08 0.400781 +08 0.391585 +08 0.448324 +.08
§ S, =mean(tn M) 104730+ 02 105860 +02 107590402 106890 + 02
' S, = mean(in y ) -.687770 + 01 6712110 +01 -.688740 +01 -.787720 01
S, =mean(ln n) .205100 + 01 .219090 + 01 .209800 + 01 .165650 + 01
S; =mean(E) .104183 + 07 .104678 + 07 .102889 + 07 104045 + 07
COVARIANCES (see ¢q. (10))
S =var(El) A3346+ 18 106474 + 15 938794 + 14 107557+ 18
S, =cov(El, 1a M-) 138715 +07 .153167 + 07 227157+ 07 326864 + 07
8, =cov(iE, Iny) -.405308 + 07 -.179065 + 07 -.176640 + 07 378817+ 06
S, =cov(El, In m) 15347407 .217908 + 07 .256852 +07 191873 + 07
S, -cov(El,Er) .106694 + 13 126682 + 13 .183258 +13 .141881+13
S,, =var(In M.) 0.632824 - 01 0.578820 - 01 0.116250 + 00 0.192532 + 00
Su =cov(In M, Iny) 473633 -01 .309349 - 02 291294 -01 77255701
S, =cov(in Mn' inm 243918 - 01 456674 - 01 .116520 + 00 .885921-01
S,¢ =cov(in Mu' E') .254907 + 08 274862 + 05 470426 + 08 444307 + 08
S,s =var(ln y‘) 685311 + 00 451765 + 00 .106489 + 01 995538 + 00
S, =cov(in Yo Ian) 420844 - 01 -.145156 - 01 153682 + 00 .703405 - 01
S,, =cov(imy o’ Er) -.298368 + 05 -.225922 + 08 -.351988 + 08 915227 +04
Sy =var(In m) 217163 + 00 328039 + 00 547928 + 00 386828 + 00
S =cov(ln n, E') 957648 + 04 174911 + 08 558619 + 08 337252+ 08
8y -Vl(E,) Ja52101 + 11 314806 + 11 A69594 + 11 268380 + 11
7
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and Table 4.—Coefficieats of fitted parsbolas (sce eq. (11))

s‘ S S s’l )Sld
s1 sl 1 SII SI 3 SN
2= S$i Sua Sis S Si 19 i & bi §
$ Su Su Su S 1 0.233530 +08 -0.232150 + 08 0.445578 + 08
SIO sl‘ Sl'l SI! SIO ’ * -
2 -.384481 +00 .135828 + 00 107071 +02
where S;,i = 1,20 are given by equation (11) as functions of e.
(Note that S, and S,, are independent of ¢, so the given E; is 3 --274450 + 01 -365608 + 01 -.T82813 +01
always constant.) - 1
3. With this 4 and X and the given E,-. lculate a condi- 4 .139041 + 0 178730+ 01 167184 +01
tional four-variate property distribution: 5 0.0 0.0 1037119 +07
El 6 922241+ 14 -.646011 + 14 .106760 + 15
::(Y(M‘)l) = Normal with mean j:and covariance & 7 220646 +07 -.408230 +07 326550 +07
u
In(n) ] -.131435 + 06 -.374509 + 07 702712+ 05 ‘
where 9 -.380928 +07 298817 + 07 .194974 4+ 07 i
S s 10 -.666018 + 12 .266089 + 12 144551 +13
] 10
- 1 207180 + 00 -.338225+00 .193529 + 00
o o I ) as) ¥
S S Py 12 222322400 -.255763 +00 79226701
4 19
and 13 -.900562 - 01 177533 - 01 975369 - 01
7] -.605811 +04 -.170433 + 05 467426 +05
S S S S S, SieSie SieSi» SiSe»
A S; Su Si: So 1 [SiSie Sh S1Si: SiSw 15 522511 +00 -.994989 + 00 .108568 + 01
s susese|” Sdss. ss.osnossa| 99 o Ses651 o1 oocels o1
s’ sl! Sll sll sl'sli sl’sll SI’sl‘l sf’ " - :
n 352618 + 05 -.114556 + 06 376651+ 04
4. Cal i
culate the four element properties " _ +60 +00 417622408
-1131(M , 1 ” -.613884 + 05 271180+ 05 393484 + 05
n -(x) -z + 2
In(y,) (gff-z+4 2 0.0 00 30431411
In(n)
From these four values the property curve, equation (8), of
the element can be determined.
Element Identity
As load increases the eccentricity of any given element in- wowewean | cowvemseo
' creases in response to the increasing deflections of the FINITE ELENENT
- member. And since it was found that characteristic element
0 behavior is different at different eccentricities it was decided
o to let the characteristic property distribution of the element
o evolve as a function of -, where ¢ is the current eccentricity VIDOLE LO0F 70 SHIFT PROPERTY CORVE
;’., of that element. Thus, element properties are not constant OF EACH ELEMENT AS ITS ECCENTRICITY | MO SNIET
and cannot be said to identify the element. However, the z INCREASES NEEOED
' vector can be used to identify the element, since it specifies
] the number of standard deviations away from the mean that SHIFT
- the element lies within its distribution. If this is held constant,
_‘-" the element Keeps its rank order relative to other elements in
i the distribution. This is like assuming that the rank order of GUTER LO0P TRCRERENTS —UNTIE AT FAILURE
the short specimens in any group would have been the same if LEAST ONE ELEMENT REACNES FAILURE @
they had been tested at any other eccentricity. (This assump-

. tion is a useful expedient, but it may not be strictly e, since
e the relative severity of defects may be influenced to . X-
tent by the eccentricity of the load.)

M 140873
Figure 10.—Block diagram of computing method.
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Computing Method

Figure 10 shows a block diagram of the computing method.
The inner loop is necessitated by the nonlinearity of the
moment-curvature relationships of the elements. The moment-
curvature relationship, or ‘‘property curve,’’ is represented
here as a Ramberg-Osgood function as discussed under Data
Processing. As the deflections increase, the property curves
must shift in response to the increasing eccentricities of the
elements. This necessitates a middle loop of iterations until
the deflections of the nonlinear finite element solution are
congruent with the eccentricities used to derive the properties
of each element. Finally, there is an outer loop in which the
load is gradually incremented until at least one element
reaches failure, If these increments are not too large, conver-
gence of the inner loops will be very rapid. A complete flow
diagram of the subprogram SIMTST used to simulate an ec-
centrically loaded member is shown in figure 11. Computing
time to simulate one destructive load test of a five-element
member was about 4 seconds on a Univac 1110 computer.

Results of Monte Carlo Simulations

Verification of the Model

Figure 12 shows a comparison of model and experimental
results. Group five consisted of a small sample of just 29
members of 8-foot gage length under 1-inch eccentric axial
load. This group was included in the study in order to

INITIALIZE LOAD, DEFLECTIONS,
PROPERTIES
; FROM_STIFFNESSES, GET DEFLECTIONS )

[#ROM_DEFLECTIONS AND LOAD, GET MOMENTS |

FRON WOWEW, WD P
GET _SECANT _STIFFNESSES

GET NEW PROFERTIES FROM OEFLECTIONS

SIGNIFICANT
OETERIORATIONA

NEEP OLD PROPERTIES

USE NEW PROPERTIES

™ 149 872

Figure 11.—Flow diagram for program SIMTST, the
JSinite element simulation of a long member
test.
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Figure 12.—Simulated failure load of 8-foot-long mem-
bers versus experimental failure loads of
group five.

roughly verify the computer finite element model. Each test
member had been E-rated at five locations within the gage
length, and the computer used these ratings as input specifica-
tions for a five-clement simulation. Each member was
simulated 30 times with element properties chosen randomly
from conditional distributions, given the input E-ratings. The
simulations are shown in iigure 12 as vertical lines represent-
ing the mean plus or minus one standard deviation. The 45°
lines show where the data should fall for perfect verification.
It is seen that the mean of group five is accurately reproduced
but that the variance is underestimated. That is, the trend of
the data is not a 45° line as it should be. This suggests that
there may be a better index of quality than the edgewise
E-rating. Perhaps flatwise E would prove to be more sen-
sitive. The correlation coefficient between Er and in M,; was

only 0.54 T

. . 0.64 2
correlation coefficient = 0.64 for group 3 (18)

0.60 4

in this study, which is not very great. The correlation between
the E; of the center element and the ultimate load for group
five was also small, namely 0.68. But the fact remains that the
correlation between strength and nondestructive quality in-
dices is never very great. This is the essential problem of
lumber grading translated here into element grading. Never-
theless it may be possible to force the computer model to do
better in the aggregate even though it remains a somewhat
poor predictor for individual members. This is worthy of fur-
ther study.

The Effect of Length

The effect of length has been discussed briefly above in the
comparison of experimental results for groups one and five.
A more thorough investigation of the effect of length can be
made with the use of the computer model. Figure 13 shows
how the 29 specimens in group five would have behaved if
they had been tested at other eccentricities or in pure bending.
Each specimen is represented by the average of 30 simulations
and mean and standard deviation of the sample of 29 is

29 28 2 36 40
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Figure 13.—Computer simulations of 8-foot-long mem-
bers under eccentric axial load.

M 149 641

plotted in the figure. Deflections due to load are ignored in
plotting moment versus axial load, that is:

M = Pe (19)
is used rather than

M =Pd (20)

even though the deflection d might be quite large. This was
done for the sake of facilitating application to design. The
design engineer krows the eccentricity e but cannot accurately
estimate the lateral deflection d especially when plastic
buckling is a possibility.

It is seen in figure 13 that the mean moment capacity does
not improve with the addition of a small amount of axial
compressive force as was found for groups one to four.
However, the low tail of the distribution does still exhibit this
effect, though it is far less pronounced than it was for the
short specimens (compare fig. 9). Before this effect can be
counted upon in design, other loadings and different species
and sizes should be investigated. Also, the behavior of the
computer model in the low tail may not be reliable since the
model is known to underestimate variability. Of course, for
very long members, failure by buckling will appear at low
compressive loads. Even at 8 feet the influence of some in-
elastic buckling is already evident, as can be seen by compar-
ing figures 9 and 13. In this comparison it is important that
the grade of the small population in group five should resem-
ble the grade of the populations in groups one to four. Figure
14 shows a comparison of the E distribution of group five to
the common E; distribution of groups one to four. It is seen
that the resemblance is quite close although no special attempt
was made to select group five members for this match. Also,
the comparison of figures 9 and 13 is a comparison of
simulated members with real test specimens, so modeling error
is present. The model underestimates variability. Thus the
comparison should be restricted to the means. Nevertheless,
the comparison strongly indicates that the effect of length is a
profound one. Three things contribute to this: inelastic
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Figure 14.—Comparisons of E,. distributions of group
five and groups one to four.

buckling, size effect, and the interaction of bending and com-
pression failure.

Summary

The interaction of bending and compression strengths of
western hemlock 2 by 6 lumber was investigated. Over 400
short specimens (with gage length = 18 in.) were tested in four
groups with different ratios of moment and compression.
Some interaction was found that decreases with increasing
length, as shown by the results of a finite element, simulation
also reported here. This finite element model was able to
reproduce mean results of a small sample of 8-foot-long
specimens but did not show as large a variation as the experi-
mental data. The model could be greatly improved if a better
nondestructive index of quality could be found which cor-
related better with strength than the edgewise bending stiff-
ness used here. Perhaps a combination of two indices should
be used.

Data should be obtained for other sizes and species. The
results could be used by researchers studying the reliability of
wood walls and roof-truss systems. The data presented here
are sufficient to show that a simple linear interaction failure
criterion is conservative—the degree of conservatism being
greater for shorter members.
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Appendix: Finite Element Analysis

Combined Bending and Compression
Consider a member of length L under eccentric axial load and divide the member into m equal
elements of length h as shown in figure Al.

L=mh (Al)
Isolate the nth element. From elementary beam theory the moment-curvature relationship is
(El) ny;\ = —Pyn (A2)

where y,, =lateral deflection in the range (n-1) h € x € nh measured from the line of action of P
and primes denote differentiation with respect to x. Let the nodal displacements be qy:

y=qn.atx=nh. n = 0,m (A3)
The solution of differential equation (A2) which satisfies boundary conditions (eq. (A3)) is
¥y = queos(n—DAh — q _ 1cos(niph) sinkx
sinA h
+ [ ~qusin(n—DAch + q _ 18in(nA;h)

sim\nh

] cosk,x (Ad)

where

Match slopes at nth node:
y;l=y;l+l=Oatx=nh (A6)

Substituting equation (A4) into (A6) and using some trigonometric identities this becomes

fsi:l‘,,h qn_”}ﬁcosl..h s ioothyaih | ) a1 | o

sinlgh ' sinky , ¢ sinky(h | dn+17
(A7)

Equation (A7) yields a banded matrix of m-1 equatioi:s for m + 1 unknown g, to qy,. But, of

course, two of the nodal displacements are given:

Go = dm < ¢ (A8)

where ¢ is the given eccentricity. Thus all nodal displacements can be obtained by solving an
(m-1)th order linear system if the A, are given. For small loads, the (ED), are constants indepen-
dent of P. For larger P one must obtain (EI);, from the secant to the point on the property curve
corresponding to the load. To find this point requires some iteration, since the deflections de-
pend on the (ED)y, the (EI), depend on the moments, and the moments depend on the deflec-
tions. A few iterations around this loop will quickly converge, however, especially if one starts

M 149 500

Figure Al.—Free-body diagram of member under eccen-
tric axial load. Centroidal deflection y is
measured from line of action of load P.
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Figure A2.—Iteration loop used in finite element simula-
tion program.

with a good initial guess. Hence for large loads one must begin with a load small enough to en-
sure linear behavior and increase by small increments, iterating to convergence after each incre-
ment, and using the solution from the last load as the initial guess for the (EI), after each incre-
ment. This procedure continues until one of the elements reaches its failing load. Figure A2
shows the iteration loop.

This method is capable of accurately modeling the phenomenon of plastic buckling when all
elements are sufficiently ductile. In that case the deflections grow rapidly just before failure.

Pure Bending

In the case of pure bending the finite element analysis is greatly simplified by the absence of any
buckling phenomenon. Consider a member of length L under pure bending as shown in figure
A3. Again cut the member into m elements of length h so that

L = mh (A9)
Isolate the nth element. The moment-curvature relationship is
(El)ny;, =M (A10)

where Yp = lateral deflection in the range (n - 1)h € x € nh. Let nodal displacements be q,:
y =Qqatx = nh,n = O,m (Al}))
The solution of equation (A10) satisfying conditions (A11) is

Yo = 18D - i -Dx + ke -1

+ a4y - -1y - ap_ @) + na,_y (A12)
where
- M
bn " “ED), (A13)
Match slopes at nth node:
Yn = Y41 = 0. x = nh (A19)

E S Sy VLT S LY

Figure A3.—Free-body diagram of member under pure
bending.
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Substituting (A12) into (A14) and simplifying yields

N :
: Gq-1 = 2p + Gpyp = Ty +igyp (A15)
3

- This is a finite difference equation whose solution can be obtained in closed form. The homoge-
3 neous solution is

" q, =@+ fn (A16)

where o and #§ are arbitrary constants. Now let a and § be functions of n:
Q, = a, + Byn (A17)

and use the method of variation of parameters (2) to find

n-1
ay = =X (i+1) g—’o‘im‘n) +A (A18)
o
n-1
Po= X B+m+n+B (A19)
o
where A and B are constants analogous to integration constants. They are determined by the
conditions
9 =0 (A20)
and
qn =0 (A21)
from which
A=0 (A22)
and
, m
B-- L Z(m-D G4 +hiy (A23)
t
Thus after simplification, we find
P
B m m
G = - 2 {M-WEIQi-Dy +n I Cm-20+Dy (A24)
1 n+1
From the nodal displacements, the deflection at the center of the nth element is calculated to be

qn - l + QH 2
by = T + (2b-)un (A29)
The computer algorithm proceeds as follows:
1. The strength of the member is the strength of the weakest element.
2, At failing load, the center deflection of the member is computed from (A2S), using (A24) and
(A13).
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U.S. Forest Products Laboratory

Strength of Lumber Under Combined Bending
and Compression, by John J. Zahn, Res. Pap. FPL
391, FPL, For. Serv., USDA. 13 p. Madison, Wis.

Extensive tests of western 2 by 6's under
eccentric axial load support the conjecture that
adding a small compressive force increases bending
strength. Length effect was tested on short test
members by simulating long members with a finite
element computer program. A small sample of
long members was tested for verification of the
model which accurately reproduces the mean but
underestimates the variance. Further work on the
model will be applicable to column and wood truss
design.
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